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of the redox sites in the film are accessible as oxidation sites, 
presumably only those sites on the surface. Considering the pH 
encapsulation effect described earlier, this conclusion is not un­
reasonable. It is also known from kinetic and mechanistic studies 
that there are rather severe microscopic constraints on the oxi­
dation of 2-propanol by (trpy)(bpy)Ru02+,23 For example, when 
the rate constants for the oxidation of (CH3)2CHOH are compared 
with those of (CD3)2CDOH, the kinetic isotope effect is ~18. 
The microscopic sensitivity of the oxidation mechanism, a lack 
of permeability of the substrate into the film, and the difference 
in medium properties between aqueous solution and the interior 
of the film may all play a role in explaining the observed site 
selectivity. A small but noticeable (~10%) increase in catalytic 
current was observed at pH 2 (H2SO4) perhaps consistent with 
an "opening" of the electrode film. However, under these con­
ditions the thicker films are slowly leached from the surface. 

As shown in Figure 8, the magnitude of the catalytic currents 
for the oxidation of 2-propanol increases with increasing 2-propanol 
concentration. The homogeneous oxidation of 2-propanol by 
(trpy)(bpy)Ru02+ has been found to be first order in both Ru(IV) 
and alcohol.23 The beginning of a saturation effect can be observed 
in Figure 8 at high alcohol concentrations. The saturation effect 
suggests that if the mechanism remains the same on the film, the 
composition of the environment around the redox sites may be 
rich in alcohol compared to the case for bulk solution or perhaps 
that at high 2-propanol concentrations the rate-limiting step is 
changing from oxidation of substrate to reoxidation of the redox 
sites at the surface of the films. 

The observed catalytic currents increase with increasing surface 
area of the electrode. An increase to ~ 100 /xA under conditions 
identical with those above was observed when films were adsorbed 
on a medium porosity reticulated vitreous carbon electrode with 
a 2-cm3 working volume. At pH >6 the electrode films are 
apparently stable to dissolution from the electrode surface. A 
typical half-life of the catalytic current is greater than 30 turnovers 
on the basis of the total number of ruthenium sites in the film. 

The experiments described here are, in the end, limited by the 
reaction described in the previous section in which the redox sites 
in the films are converted into an unknown couple having E1^ 

(23) Thompson, M. S.; Meyer, T. J., manuscript in preparation. 

The past decade has witnessed a growing awareness of the 
applicability of discrete combinatorial structures to the precise 
formulation and understanding of broad classes of molecular 
phenomena. The chemically and mathematically classical problem 
of enumerating distinct isomers of specified composition of a 
molecular frame and the allied, more contemporary one of enu­
merating distinct reorganizational processes for those isomers have 

ss 0.63 V. The ability of the film to catalyze the net electro­
chemical oxidation of 2-propanol is, however, impressive in some 
ways. Catalytic experiments with the homogeneous analogue, 
(bpy)2(py)R-u02+. show that on a per site catalytic turnover basis, 
the homogeneous system is less stable by a factor of at least 6. 
In the homogeneous case the decomposition pathway appears to 
be loss of a pyridyl group and oxo-bridge formation." Although 
the problem of oxo-bridge formation appears to have been solved 
in the polymer film, the new pathway described above intervenes 
to limit the useful catalytic lifetimes of the film. 

p-Toluic acid and a mixture of the xylenes, with added sur­
factant (0.02 M sodium dodecylsulfate), were also investigated 
as substrates. From the homogeneous electrocatalytic experiments 
it is known41 that with (trpy)(bpy)Ru02+ as the oxidant the 
substrate oxidation reactions are 

CH3C6H4CO2- " 6 ^ * . C6H4(CO2),
2" 

C6H4(CH3), - "2
+°4H~^H*- C6H4(CO2),

2-

The aromatic substrates gave catalytic currents of approxi­
mately one-fourth of those observed for 2-propanol at equivalent 
concentrations, but the reactions were not studied in detail. 

Binding the catalyst in the film offers the advantages inherent 
in the chemically modified surfaces approach: (1) use of relatively 
small amounts of the catalytic reagent and (2) the conversion of 
a homogeneous system into a heterogeneous one with the possi­
bilities for flow-through design. In the long run there may be 
additional advantages associated with substrate concentration 
effects in the films and with an inhibition of deleterious side 
reactions which lead to unwanted products or to the decomposition 
of the catalytic sites themselves. The observation of such a 
pathway here is discouraging since it limits the effective catalytic 
lifetimes of the films. However, given our ability to make designed 
chemical modifications at the redox sites in the film, we regard 
our initial observations as encouraging toward an ultimate goal 
of developing a series of chemically modified electrodes which have 
a high functional group specificity toward oxidation and/or re­
duction. 
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attracted many theoretical and experimental investigators.1"8 It 
appears to have escaped notice that both problems can in large 
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measure be subsumed under mathematical constructs set forth 
over 50 years ago by J. H. Redfield.9 

We exhibit fundamentals of Redfield's masterpiece, "The 
Theory of Group-Reduced Distributions", and demonstrate how 
disparate aspects of modern chemical combinatorics are united 
by his methodology.10"13 

Consider m sets X1, X2,..., Xm, each consisting of n elements. 
The elements of each set are arrayed in horizontal n-tuples, so 
as to form mXn matrices. Matrices which are column equivalent, 
i.e., differ only by reordering of intact columns, present the same 
correspondence (relative relation, superposition) of set elements. 
There are a total of (n\)m matrices under consideration, and 
{n\)mjn\ = (n!)m_1 correspondences C. 

When there is a nontrivial group action T:C on the classes of 
matrices, we must elicit the number of nonequivalent types or 
patterns of correspondence. An element ytT acting bodily on a 
matrix is defined by its component permutations 7,LY,- acting on 
the individual matrix rows. Group elements are composed by 
component multiplication. 

, , / - ^ n ^ 1 2 ••• %in \ 

7 M = (Ti, T2, - , T m ) U 2 1 X11 ...X1n J = 
V* mi Xml ... Xmn/ 

(Ti-AT11 Ti-^i2 - Ti-^in \ 

T2-^22 T2-^22 - T2-^2 n J = M' 
Im'Xmi Im'Xmi ••• 7m'Xmn/ 

Burnside's fundamental lemma13b for the number of patterns 
N (see eq 1) requires that we characterize the number /(7) of 

N(CT) = T^XKy) (D 

correspondences which are invariant for each yeT. In other terms, 
we must determine the properties of those matrices which 7 
transforms to another in the same correspondence class. 
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"Graphical Enumeration"; Academic Press: New York, 1973. 

Two typical components of 7, yu and 7,, are written in disjoint 
cycle notation and arranged in matrix-like manner (a), with cycles 
of the same length in the same position. It is crucial to observe 

(a)Tu: (10)(4)(2) (8£L (7.12.1.11) (13,9,3,6) 
V (7)(11)(4) (9,13) (5,10.6,1) (8,3,12,2) 

(P) = (l324*) 
(b)ATu/10 4 2 8 5 7 12 1 1 1 13 9 3 6 \ 

Xv\ 7 11 4 9 13 5 10 6 1 8 3 12 2 / 

that simple neglect of the separating symbols in (a) yields a portion 
(b) of the full correspondence invariant to (7U, 7V). The number 
of subcorrespondences fixed by (7U, 7V) thus comes to the number 
of forms 7V can manifest relative to a given expression of ya. These 
different manifestations consist of (1) intracycle, circular rear­
rangement of the constituent elements and (2) intercycle reordering 
of cycles of common length. (Invariance of the correspondence 
clearly demands that 7U and 7V possess the same number jk of 
cycles of k elements, as signified by the partition (p) of «: (I-" 
2'1... kJk... n>").) A k cycle in yv can be initiated with any of its 
k elements, providing (kJk) representations of the cycles in given 
order. Reordering of k cycles is accomplished injk\ ways, to yield 
(kJkJk*) representations. All occurring cycle lengths therefore 
furnish Hk=l(k

Jkjk\) representations of 7V,14 which are interpreted 
above as (yu, yv) invariant subcorrespondences. All the X1 and 
all m components of 7 are brought into effect multiplicatively, 
to give the total number of patterns of correspondence. 

N(CT) = -i-E [ A k^jk(y)\]m-' (2) 
|r|T(r *-i 

It is to be emphasized that only 7's whose component permu­
tations all map to a common cycle partition (p) are nonzero 
contributors. To effect the above evaluation, Redfield introduced 
cycle indicator monomials in an arbitrary indeterminate variable 
s, z(7,-;s) = s1-''

(T'V!(Ti,-"V"(7')> and an operator "cap" (H) for 
transforming them to the required number.15 

z(yx;s)C\z(y2;s)C\-C\z(ym;s) = 
[nA:^»;,(7)!]m-1 when jk(yu) = jk(yv) ^ jk(y), V u,v 

k 
0 otherwise 

By indexing each of the 7's as 7' = (7/, 72',..., yj), the pattern 
result takes the form 

1 | r | 

N(T1Q = TF.Zz(yl')nz(y2
l)n...nz(ym

l) (3) 

In many instances the group T separates as a direct product 
of subgroups T,- = (7,1, 7,2,...} acting in uncorrelated fashion on 
the A",.3d'e'16 The number of patterns is then the cap product of 
group cycle indices, Z ( I » = l^r1 E^r/lT,;*)-

N(T,Q = z(ri;i)nz(r2;s)n...nz(rM;s) (4) 
It is useful to note that the index of the symmetric group, Z(Sn), 
is the identity element of cap multiplication. 

We now review some applications of this aspect of Redfield's 
theory. If T1 = T(G1), the automorphism group of n-vertex graph 
Gh the cap product appearing above is the number of distinct 
superpositions (matchings, stackings) of the graphs.17 We will 

(14) In other terms,4 this is the order of the automorphism group of 7,: 
|X* S,k[Ck]\. 

(15) It may be argued that polynomials are extraneous complications to 
the problem at hand, being mere information-carrying devices devoid of 
fundamental significance. In response, notational and symbolic systems to 
facilitate and succinctly manage complex operations are historically pivotal 
to mathematical development. Polynomials are more than justified in the 
present context by the felicitous consequences of their use. 

(16) This situation is often addressed (e.g., in enumerative graph theory) 
to the exclusion of more general, concerted group actions pertinent to a 
significant number of chemical problems (ref 7 and unpublished studies). The 
formal description, that of different representations x<(T) of a single group 
on different subsets, is central in de Bruijn's fashioning of enumeration theory"8 

(cf. ref 3d,e). 
(17) (a) Read, R. C. J. London Math. Soc. 1959, 34, 417-436; Ibid. 1960, 

35, 344-351. (b) Can. J. Math. 1968, 20, 808-841. 
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generalize the interpretation to any set of (necessarily distin­
guishable) objects: isomers are superpositions of Iigands and 
molecular skeleta, while isomer superpositions are isomerization 
modes (or the basis for them). In different and often obscure 
terminology, Redfield counted both kinds of correspondence in 
1927. 

The case m = 2 is obviously most significant, for then the 
correspondences are bona fide bijective mappings. These were 
counted as specializations of injective mappings by de Bruijn18 

and as (T11T2) double cosets by Ruch,3a Klemperer,4a and Brown5a 

and co-workers. Klemperer's argumentation and formulation most 
closely resemble those of Redfield. Some formidable group 
theoretic tools led Ruch to his popular formula,33 which when 
rearranged and stripped of redundant quantities is equivalent to 
the cap interaction of ThT2 cycle indices. 

|ril|r2|(„) | c w | 

N[TuT2) = Z(Tus)nZ(T2;s) (6) 

To count isomers of a frame T1 by an achiral ligand set of 
partition (p) = (1-"2^2... n1") (i.e., ̂  subsets, each consisting of 
k indistinguishable Iigands), the appropriate group is the direct 

f roduct T2 = S/' X Sj1 X ... X SJ", conveniently symbolized by 
IS(p). In practice it is frequently desirable to refine the enu­

meration by reserving subsets of skeletal sites for selected subsets 
of Iigands. The compound bijection is pieced together from the 
subbijections Xy ** X2j. Distinct, noninteracting variables for 
each skeleton and associated ligand subset may be shown to effect 
the required discrimination.7,19 

N = z(r i ;5,t,«)n [ZdIS(P1)^)-ZdIS(P2)JO-Z(IIs(P3)IM)] 
(7) 

(p) = (Pu Pi Pi) is the compound ligand partition. Comparable 
techniques of mapping restriction are applicable to the dynamic 
problem below. 

When mixtures of achiral and chiral Iigands are distributed 
over an achiral frame,3d,c the frame and ligand actions are cor­
related: permutations induced by reflections simultaneously 
transform chiral Iigands to their enantiomeric conjugates. Only 
racemic ligand partitions, which exhibit overall stability to 
transformation, are entertained. We either may directly employ 
the first Redfield formula or take pains to make explicit the proper 
permutation combinations. 

(1) The full frame group is dissected into the rotational sub­
group T1

0 and its coset of reflective permutations: T1' = T1
0UoTi0. 

(2) Correspondingly, the chiral ligand group T2c is dissected 
into pure permutation and permutation-enantiomer exchange 

(18) (a) de Bruijn, N. G. Ned. Akad. Wetensch. 1959, A62, 59-69. (b) 
"Applied Combinatorial Mathematics"; Beckenbach, E. F., Ed.; Wiley; New 
York, 1964, pp 144-184. (c) Nieuw Arch. Wiskunde 1971, 19, 87-112. (d) 
J. Combinatorial Th. 1972, 12, 14-20. 

(19) It is assumed that the Xy are unions of frame group orbits. If this 
condition does not pertain, we must effectively redefine the frame by de­
scending to a subgroup of T1 appropriate to the problem. Also, equivalences 
between the ligand subsets are forbidden. 

components: T2/ = r2c°Uer2c°. 
A collection of chiral Iigands such as A3B3C2A3B3C2 is char­

acterized by a compound partition, (pc; pc) = (322;322), and a 
wreath product symmetry group, T2c' = S2[ITS(pc)] = S2[S3

2 X 
S2]. The base of this group, .E2[ITS(Pc)] ~ [IIS(pc)]

2, is the index 
two subgroup of pure permutations, and its coset consists of 
conjugate ligand exchanges. The total ligand group is the direct 
product of its achiral and chiral constituents, T1' = T2a X T2/, 
where T2a = IIS(pa). Appropriate coupling of group and coset 
indices yields expression 8. Neglecting the coefficient, the first 
term counts total stereoconfigurations and the second term enu­
merates those which are achiral. 

N = y2[z(r1°)nz(r2a x r2c°) + z t o - r ^ n z d ^ x fr2c
0)] 
(8) 

The so-called dynamic problem of enumerating differentiable 
patterns of isomerization is handled expeditiously by Redfield's 
methods. Viewed as superpositions of isomers or labeled graphs, 
the nature of the problem would be widely comprehended by both 
chemists and combinatorialists. The transformations of all (p) 
isomers8" are given by eq 9, where T1 and T3 are frame groups 

TV = Z(r,;.s)nZ(r2;s)nZ(r3;s) (9) 

and T2 is the ligand group, ITS(p). The first cap pair enumerates 
initial isomers, the second pair gives product isomers, and the 
composite yields patterns of correspondence between them. When 
T3 = T1, the transformations are pure permutational isomerizations 
on a fixed skeleton. When all Iigands are identical, T2 = Sn, the 
patterns degenerate to pure skeleton superpositions.21 To cir­
cumscribe the calculation to particular initial and final (p) isomers 
with respective symmetry groups T8 and Tb, distinctive index 
variables isolate subsets of sites occupied by identical Iigands, 
which map together.22 

Â  = Z(T,;s,t,u)C\Z{Th;s,t,u) (10) 

Attractive attributes of the Redfield formalism are the versatility 
and clarity of formulation. The basic simplicity of the questions 
considered stands unobscured by procedural and notational details, 
which necessarily enter equivalent, lower dimensional descriptions. 
We believe the approach will go far in enhancing utilization of 
combinatorial structures in chemistry. Comprehensive exami­
nation of Redfield theory, properties of the more general cup (U) 
operator, higher matrix symmetries, and detailed chemical ap­
plications are undertaken in other contributions. 

(20) The form of expression 8 is typical for partially correlated group 
action, e.g., Hasselbarth-Ruch modes3* are counted by 1J2[Z(T ^)HZ(T fi 
+ z(ar1

5)nz(<rr1
0)]. 

(21) The appropriate frame group, group element correlation, and com­
bination of basic isomerizations into higher classes (modes) are decided by 
distinguishability in the overall experimental situation (ref 3b,6a,2d,4). 
Possibly, the present analysis could be extended to compute the number of 
modes when an isomerization and its inverse are regarded as equivalent. 

(22) Thus, the 38 rotationally distinct types of isomerization of the three 
(p) = (32) trigonal-bipyramid isomers88 may be decomposed into 2, 4, and 
12 intraisomer, degenerate isomerizations and 2-2, 2-2, and 2-6 interisomer, 
nondegenerate isomerizations. 


